Population dynamics of the 2 major mitochondrial DNA haplotypes in experimental populations of Drosophila subobscura.
نویسندگان
چکیده
The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Calvià (Majorca, Balearic Islands, Spain). This population, like others founded in Europe, is characterized by the presence of 2 very common (>95%) mitochondrial haplotypes (named I and II) and rare and endemic haplotypes that appear at very low frequencies. Four experimental populations were established with flies having a heterogeneous nuclear genetic background, which was representative of the composition of the natural population. The populations were started with haplotypes I and II at an initial frequency of 50% each. After 33 generations, the 2 haplotypes coexisted. Random drift could be rejected as the only force responsible for the observed changes in haplotype frequencies. A slight but significant linear trend favouring a mtDNA (haploid) fitness effect has been detected, with a nonlinear deviation that could be due to a nuclear component. An analysis of chromosomal arrangements was made before the foundations of the cages and at generation 23. Our results indicated that the hypothesis that the maintenance of the frequencies of haplotypes I and II in natural populations could be due to their association with chromosomal arrangements remains controversial.
منابع مشابه
Mitochondrial DNA evolution in experimental populations of Drosophila subobscura.
When two mitochondrial DNA (mtDNA) haplotypes of Drosophila subobscura compete in experimental populations with discrete generations, one or the other approaches fixation, depending on the nuclear background with which they are associated. The approach to fixation, however, is strongly dependent on the effective number of females in the population, Nf. Whether or not the ultimate fate of a give...
متن کاملMitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura.
The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Esporles (Majorca, Balearic Islands, Spain). This population, like other European ones, is characterized by the presence of two very common (>96%) mitochondrial haplotypes (called I and II) and rare and endemic haplotypes that appear at very lo...
متن کاملDynamics of the mtDNA Haplotype Variability in a Drosophila subobscura Population Over a Two-Year Period
Restriction site analysis of mitochondrial DNA (mtDNA) was carried out on 607 isofemale lines, corresponding to monthly samples obtained over a two-year period, from a single geographic population of Drosophila subobscura to evaluate the possible changes in the action of the evolutionary forces with respect to the variation of the seasonal enviromental conditions. The haplotype distribution pat...
متن کاملNegative frequency dependent selection on sympatric mtDNA haplotypes in Drosophila subobscura
BACKGROUND Recent experimental evidence for selection on mitochondrial DNA (mtDNA) has prompted the question as to what processes act to maintain within-population variation in mtDNA. Balancing selection though negative frequency dependent selection (NFDS) among sympatric haplotypes is a possibility, but direct empirical evidence for this is very scarce. FINDINGS We extend the previous findin...
متن کاملWithin-population genetic effects of mtDNA on metabolic rate in Drosophila subobscura.
A growing body of research supports the view that within-species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2005